ATIVAÇÃO DIFERENCIAL DE V-ATPASES NA MEMBRANA PLASMÁTICA EM LINHAGENS DE MELANOMA

Julianna Maria da Cunha de Oliveira Santos

UNIVERSIDADE ESTADUAL DO NORTE FLUMINENSE
DARCY RIBEIRO- UENF
CAMPOS DOS GOYTACAZES / RJ
JANEIRO – 2010
Dissertação apresentada ao Centro de Biociências e Biotecnologia como parte das exigências para obtenção do grau de mestre em Biociências e Biotecnologia pelo programa de pós-graduação em Biociências e Biotecnologia.

Orientador: Prof. Dr. Arnoldo Rocha Façanha
Co-orientadora: Prof. Dra Nadir Francisca Sant’Anna

Apoio: Capes e UENF
Ao meu querido avô João Luiz (in memoriam), aos meus pais João Carlos e Giovana, irmãos Lucas e Joanna e ao meu namorado Ronaldo.
AGRADECIMENTOS

Agradeço em primeiro lugar à Deus, que me capacitou e deu forças para que eu chegasse até o final e para que não desistisse com todos os obstáculos que se colocaram na minha frente...

Ao professor Dr. Arnoldo Rocha Façanha, meu orientador, por todos ensinamentos, apoio, força, palavras de ânimo ao longo de todo percurso e pela oportunidade de trabalhar com uma excelente linha de pesquisa e em um ótimo grupo de pesquisa...

À minha família, meus pais João Carlos e Giovana, meus irmãos Lucas e Joanna, minhas avós e tias pelo apoio sempre oferecido durante todo o tempo...

Ao meu namorado Ronaldo pela força, apoio e ajuda nas formatações e estatísticas...

À minha co-orientadora professora Dra Nadir Francisca Sant’Anna;

A todos os amigos do grupo de pesquisa entre eles Josimara Barcelos, Silvia Martim, Inga Gonçalves, Daniel Zandonadi, Erineudo Canuto, Camilla, Brunna Xavier e Henrique Carneiro...Em especial à minha querida amiga Josimara que muito me ensinou e ajudou...Aos amigos de laboratório pelo incentivo e ajuda, em especial à amiga Laura Motta pela grande ajuda na correção do inglês durante a elaboração do artigo e à Juliana Padrão pela parceria com a célula J774.

A toda equipe de técnicos e funcionários do LBCT pelo apoio, ensinamentos e incentivo, em especial à Rose, Darli, Adrianinha, Bia, Giovana, Arthur e a querida Dona Maria.

Aos professores Dr. André Lacerda e Dra Anna Okorokova pela participação na banca do projeto e pelas contribuições científicas feitas...

Ao André pela revisão do trabalho

A CAPES pela bolsa concedida.
ÍNDICE GERAL

<table>
<thead>
<tr>
<th>Seção</th>
<th>Página</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lista de Figuras</td>
<td>VII</td>
</tr>
<tr>
<td>Abreviaturas</td>
<td>IX</td>
</tr>
<tr>
<td>Resumo</td>
<td>X</td>
</tr>
<tr>
<td>Abstract</td>
<td>XI</td>
</tr>
<tr>
<td>1-Introdução</td>
<td>12</td>
</tr>
<tr>
<td>2-Revisão Literária</td>
<td>15</td>
</tr>
<tr>
<td>2.1- Câncer</td>
<td>15</td>
</tr>
<tr>
<td>2.2- Regulação do pH Celular</td>
<td>16</td>
</tr>
<tr>
<td>2.3- Estrutura e Funcionamento da F-ATPase</td>
<td>17</td>
</tr>
<tr>
<td>2.4- Estrutura e Funcionamento da P-ATPase (Na+K+-ATPase)</td>
<td>18</td>
</tr>
<tr>
<td>2.5- Estrutura e Funcionamento da V-ATPase</td>
<td>19</td>
</tr>
<tr>
<td>2.6- Inibidores da V-ATPase</td>
<td>22</td>
</tr>
<tr>
<td>2.7- V-ATPase e Células Tumorais</td>
<td>25</td>
</tr>
<tr>
<td>2.8- Progressão Tumoral</td>
<td>26</td>
</tr>
<tr>
<td>3-OBJETIVO GERAL</td>
<td>30</td>
</tr>
<tr>
<td>3.1- Objetivos Específicos</td>
<td>30</td>
</tr>
<tr>
<td>4- MATERIAL & MÉTODOS</td>
<td>31</td>
</tr>
<tr>
<td>4.1- Cultura de Células</td>
<td>31</td>
</tr>
<tr>
<td>4.2- Microscopia de Campo Claro</td>
<td>32</td>
</tr>
<tr>
<td>4.3- Microscopia de Fluorescência Usando o Fluoróforo Laranja de Acridina</td>
<td>32</td>
</tr>
<tr>
<td>4.4 - Mensuração de pH</td>
<td>33</td>
</tr>
<tr>
<td>4.4.1- Mensuração de pH Qualitativa</td>
<td>33</td>
</tr>
<tr>
<td>4.4.2- Mensuração de pH Quantitativa</td>
<td>33</td>
</tr>
<tr>
<td>4.5- Fracionamento Celular e Purificação da Membrana Plasmática</td>
<td>33</td>
</tr>
<tr>
<td>4.5.1 – Dosagem de Proteína</td>
<td>34</td>
</tr>
<tr>
<td>4.5.2 – Atividade de hidrólise de ATP das ATPases do tipo: V, P e F</td>
<td>35</td>
</tr>
<tr>
<td>4.5.3- Tratamento Estatístico</td>
<td>36</td>
</tr>
<tr>
<td>5- RESULTADOS</td>
<td>37</td>
</tr>
</tbody>
</table>
5.1 – Morfologia Celular..37
5.2 – Visualização de Compartimentos Ácidos ...39
5.3 – Acidificação Extracelular...45
5.3.1- Inferência do pH Usando Ágar e Púrpura de Bromocresol Comparando J774, B16F0 e B16F10..45
5.4 – Medicação potenciométrica do pH do meio de cultura...47
5.5- Atividade Hidrolítica da F-ATPase da Fração Mitocondrial...47
5.6 Atividade Hidrolítica V-ATPase da Fração de Interface...50
5.7 – Atividade Na-K-ATPase Ouabaïna Sensível...54
6- DISCUSSÃO..55
7- CONCLUSÃO..61
REFERÊNCIAS BIBLIOGRÁFICAS...62
LISTA DE FIGURAS

Figura 1- Fatores determinantes de pH das organelas..17
Figura 2- Esquema da F-ATPase mostrando as múltiplas subunidades e os domínios F_0 e F_1...18
Figura 3- Estrutura da Na+K+-ATPase..19
Figura 4- Estrutura da V-ATPase mostrando as múltiplas subunidades.................................20
Figura 5- Estrutura dos inibidores concanamicina e bafilomicina.......................................22
Figura 6- Estrutura do Inibidor de V-ATPase destruxina...13
Figura 7- Estrutura do Inibidor de V-ATPase Prodigiosina..13
Figura 8- Esquema mostrando tumor não tratado e tumor tratado com inibidores da V-ATPase...25
Figura 9- Morfologia das linhagens utilizadas através da técnica de Campo Claro.............38
Figura 10- Padrão de acidificação das culturas revelado pelo fluoróforo Laranja de Acridina, observado em Microscópio de Fluorescência...40
Figura 11 – Perfil de acidificação das culturas revelado pelo fluoróforo Laranja de Acridina, observado em Microscópio de Fluorescência com uso de inibidor..............42
Figura 12- Perfil de acidificação das culturas revelado pelo fluoróforo Laranja de Acridina, observado em Microscópio de Fluorescência com uso de inibidor...............44
Figura 13- Perfil de acidificação do meio de cultura das linhagens J774, B16F10 e B16F0...46
Tabela 1- Medicação Qualitativa de pH das linhagens J774, B16F10 e B16F0.......................47
Figura 14- Gráfico da Atividade Hidrolítica da F-ATPase Azida Sensível comparativa entre as linhagens...48
Figura 15- Gráfico da Atividade Hidrolítica da F-ATPase com equação da reta e regressão de cada uma das linhagens J774, B16F10 e B16F0...49

Figura 16- Velocidade Inicial média da enzima F-ATPase por minuto.............................50

Figura 17- Atividade Hidrolítica da V-ATPase comparativa entre as linhagens J774, B16F10 e B16F0..51

Figura 18- Gráficos da Atividade Hidrolítica da V-ATPase na membrana da interface da linhagem J774 – Concanamicina sensível nas diferentes linhagens com equação da reta e regressão..52

Figura 19- Velocidade Inicial média da enzima V-ATPase por minuto na fração de interface nas linhagens J774, B16F10 e B16F0...53

Figura 20- Gráfico da Atividade de Na-K-ATPase na fração mitocondrial das linhagens J774, B16F10 e B16F0..54

Figura 21- Gráfico da Atividade Na-K-ATPase na fração de interface das linhagens J774, B16F10 e B16F0..54
Abreviaturas

ATP - adenosina tri fosfato
DA - Dalton
DNA - ácido desoxirribonucléico
Pcs - pró proteínas convertases
SFB - soro fetal bovino
DMEM - meio eagle modificado
PBS – tampão fosfato-salino
Rpm - rotações por minuto
Tris - abreviação do composto orgânico (hidroximetil)aminometano
EDTA - ácido etilenodiamino tetra-acético
PMSF - phenylmethanesulphonylfluoride
EGTA - Ethyleneglycol-bis(β-aminoethyl) tetraacetic Acid.
BSA – soro albumina bovina
Hepes – tampão, (4- (2-hydroxyethyl) - ácido 1-piperazineethanesulfonic)
DIC - contraste interferencial diferencial
INCA - Instituto Nacional do Câncer
LBCT - Laboratório de Biologia Celular e Tecidual
CAPES de Nível Superior - Coordenação de Aperfeiçoamento de Pessoal
Ptn – proteína
SE ± - erro padrão
PPI - inibidores de bombas de prótons
BCRJ - Banco de Células Radovan da Universidade Federal do Rio de Janeiro
Pi - fosfato inorgânico
HIF – fator 1 α induzido por hipóxia.
RESUMO

O câncer é um dos maiores problemas de saúde em todo mundo. De acordo com a perspectiva do INCA para o ano de 2010 a incidência de câncer é de mais de 400.000 novos casos de câncer em homens e mulheres. Recentemente, a V-ATPase tem sido estudada como um novo oncogene. A V-ATPase é uma enzima da família das bombas de prótons que possui 13 subunidades distribuídas em dois domínios: um domínio de membrana V0 e um domínio catalítico (V1) que requer ATP para formação de gradiente de prótons. Esta enzima tem sido descrita com envolvimento na acidificação da matriz extracelular e processos relacionados como crescimento celular e mobilidade em células saudáveis e tumorais. A V-ATPase também tem sido implicada como responsável pela aquisição de fenótipo mais invasivo e metastático, quando expressa na membrana plasmática de diversos tumores. Este estudo, mostra a ativação diferencial de V, F e P-ATPase, onde a linhagem mais metastática teve maior atividade, apresentou compartimentos ácidos mais periféricos e maior acidificação extracelular em relação às outras linhagens utilizadas, o que pode estar relacionado ao papel, principalmente, da V-ATPase que é considerada como novo alvo para terapia do câncer.

Palavras-chave: câncer, células tumorais, V-ATPase e acidificação.
ABSTRACT

Cancer is a major health problem in all over the world. In accord to INCA´s study the perspective to 2010 is an incidence of more 400.000 new cases of cancer in men and women. Recently, the V-ATPase has been studied as a new oncogene. The V-ATPase is a proton pump that has 13 subunits distributed in 2 domains: a membrane domain (V0) and a catalytic domain (V1) and requires ATP to form a gradient of protons. This enzyme has been described to be involved in the acidification of the extracellular matrix and its related processes, such as cell growth and mobility in healthy and tumoral cells. The V-ATPase has also been implicated in a phenotype more invasive and metastatic when expressed on the plasma membrane in several tumor cells. This study, shows the differential activation of V, F and P-ATPase, bigger in the B16F10 cell line, it was observed a clear peripheric distribution in the same line and more extracellular acidification witch can indicate role of this enzyme, mainly V-ATPase, in cancer development as well as if it could be considered as a new target to the cancer therapy.

Key Words : cancer, tumor cells, V-ATPase and acidification.
1-INTRODUÇÃO

As variações de pH são fenômenos importantes para vários processos biológicos, sendo crucial para a manutenção da homeostase celular (Lu e cols, 2005). Entre as principais funções influenciadas pelo pH, descritas para células animais, estão o crescimento e a mobilidade para células normais e carcinogênicas, influenciando os processos de metástase e resistência a drogas nestas últimas (Perona e Serrano, 1988; Thiebaut e cols, 1990; Schlappac e cols, 1991; Gottlieb e cols, 1995; Helmlinger e cols, 1997; Martinez-Zaguilan e cols, 1998; Martinez-Zaguilan e cols, 1999; Murakami e cols, 2001).

O parâmetro mais utilizado para distinguir os diferentes sistemas de transporte é a permeabilidade seletiva que estes conferem à membrana. Mesmo antes das primeiras bombas iônicas serem descritas, já era bem estabelecido o conhecimento empírico de que os canais transportam íons numa velocidade bem maior que os carreadores. Tal diferença na velocidade de transporte é devido às mudanças conformacionais específica associada ao transporte via carreadores e bombas, sendo que este último sistema de transporte ainda mais lentos por requererem mudanças conformacionais mais complexas, envolvendo a hidrólise de um composto fosfatado, geralmente o ATP, usado como fonte de energia para o transporte ativo através das membranas (Martin e Harvey, 1994).

A V-ATPase é uma enzima oligomérica, da família das bombas de prótons que possuem alta afinidade por ATP, são responsáveis pela acidificação de compartimentos intracelulares como endossomos, lisossomos e vesículas sinápticas; e são compostas por um setor de membrana V_0 e um setor catalítico V_1 (Hille e cols, 1993; Torigoe e cols,
O setor \(V_0 \) executa o transporte de prótons enquanto o setor periférico \(V_1 \) é responsável pela função catalítica de hidrólise de ATP (Forgac, 1992; Wilkens e Forgac, 2001; Halaban e cols, 2002; Chaban e cols, 2004; Wang, Cipriano e Forgac, 2007). A V-ATPase é expressa em eucariontes, desde leveduras até humanos. As V-ATPases utilizam energia produzida pela hidrólise de ATP para bombar prótons contra um gradiente de concentração iônico e transformam a energia liberada em potenciais eletroquímicos que energizam a membrana para dirigir vários processos de transporte via carreadores (Moriyama, 1996; Forgac, 1999; Izumi e cols, 2003; Beyenbach e Wieczorek, 2006; Hille e Walz, 2007). A estrutura das ATPases dos tipos V e F são notavelmente conservadas ao longo da evolução (Gogarten e cols, 1992; Harvey e Wieczorek, 1997; Wilkens e Forgac, 2001; Gruber e cols, 2001). Entretanto, enquanto as V-ATPases funcionam fisiologicamente hidrolisando ATP e bombeando \(H^+ \), contra um gradiente de concentração, em vesículas e organelas ácidas e na membrana plasmática de células especializadas; as F-ATPases (também chamadas ATP-sintases) sintetizam ATP ao dissipar gradientes de \(H^+ \) estabelecidos em membranas mitocondriais de células eucarióticas ou na membrana plasmática de bactérias (Garrido, 2007).

Uma característica marcante da V-ATPase é que ela está envolvida em diversas funções celulares, como endocitose, transporte intracelular, reabsorção óssea, metástase tumoral e homeostase de \(pH \) citoplasmático (Gluck, 1992; Izumi e cols, 2003). As V-ATPases são funcionalmente expressas na membrana plasmática de células tumorais humanas e têm funções especializadas no crescimento, diferenciação, angiogênese e metástase, onde desempenha um papel na manutenção de ambiente ácido favorável à invasão (Sennoune e cols, 2004; Fais e cols, 2007, Supino e cols,
2008). A extrusão de prótons mediada pelas V-ATPases inseridas na plasmalema pode causar acidificação extracelular levando à ativação de proteases que digerem a matriz extracelular durante o processo de invasão e metástase (Martinez-Zaguilán e cols, 1996; Nishi e Forgac, 2002), exacerbando a habilidade migratória de células metastáticas, o que faz destas enzimas um importante alvo na terapia contra o câncer (Sennoune e cols, 2004). Tais evidências têm desencadeando um crescente interesse no estudo do papel da atividade da V-ATPase nos processos de tumorogênese e metástase (Lu e cols, 2005).

O presente trabalho mostra uma caracterização parcial de atividades das V-,F-,P-ATPases, a localização de compartimentos ácidos e perfil de acidificação em culturas de células tumorais, visando contribuir para a elucidação do papel que estas enzimas exercem no processo de carcinogênese. Testaremos a hipótese da V-ATPase ser um fator importante na aquisição de um fenótipo mais invasivo e metastático em células de melanoma, e que esta enzima, normalmente encontrada em endomembranas, está diferencialmente expressa na membrana plasmática de células tumorais.
2-REVISÃO LITERÁRIA

2.1- Câncer

O câncer é um importante problema de saúde pública tanto em países desenvolvidos quanto nos países em desenvolvimento, sendo responsável por mais de seis milhões de óbitos por ano o que representa 12% das causas de morte no mundo. No Brasil os tumores mais freqüentes nos homens são de próstata, pulmão, estômago, esôfago, cólon e reto; e nas mulheres são de mama, colo uterino, cólon e reto, pulmão e estômago.

O Brasil se destaca tanto como uma área de interesse potencial para monitoramento e controle das tendências de incidência de câncer quanto para estudo de variações geográficas nos padrões desta doença (Guerra, Gallo e Mendonça, 2005). De acordo com a pesquisa de perspectivas de Câncer para o ano de 2010, divulgada pelo INCA (Cordeiro e cols, 2009), são previstos mais de 400.000 novos casos de câncer entre homens e mulheres, com maior incidência de câncer de próstata para os homens e câncer de mama nas mulheres. Mas o câncer também representa um dos maiores problemas de saúde pública para a maior potência econômica e científica do mundo atual, os Estados Unidos da América, onde a cada quatro mortes, uma é por câncer (Jemal e cols, 2008).

Clinicamente, o câncer geralmente se manifesta através da formação de tumores devido a uma proliferação celular excessiva, podendo causar dores e sangramento pela invasão de nervos e vasos, levando a distúrbios funcionais causados pela pressão nos tecidos adjacentes ao tumor e também pela substituição das células saudáveis destes. Porém, esses sintomas não são específicos de câncer e o diagnóstico é feito através de exames histológicos em amostras do tumor que incluem origem, tipo, crescimento e
invasão do câncer (Mareel e Leroy, 2003). Um grande obstáculo para um tratamento efetivo do câncer é o fenômeno de resistência à multidrogas que se desenvolve durante o tratamento quimioterápico em muitas células tumorais (Altan e cols, 1998). As drogas que geralmente estão envolvidas nessa resistência são produtos naturais ou derivados sintéticos destes. Alterações no equilíbrio do pH celular também têm sido implicadas no processo de resistência à drogas, por influenciar o funcionamento de glicoproteínas P ou MDR (MultiDrug Resistance-proteins) expressas nas membranas das células resistentes, as quais atuam como bombas de efluxo de moléculas que integram o princípio ativo dos quimioterápicos (Martinéz-Zaguilán e cols, 1999).

2.2- Regulação do pH Celular

Foram identificados quatro principais sistemas de regulação de pH citosólico nas células tumorais: trocadores de Na\(^+/\)H\(^+\), transportadores de bicarbonato, simportadores próton-lactato e bombas de prótons (Gillies e cols 1990; Gillies e Martinez-Zaguilán, 1991; Wahl e cols, 2000; Sennoune e cols, 2004).

2.3- Estrutura e Funcionamento da F-ATPase

As F-ATPases são enzimas oligoméricas encontradas em eubactérias, mitocôndrias e cloroplastos, e tal como as V-ATPases consistem de 2 componentes, um domínio catalítico hidrofílico F\(_1\) e um canal de prótons inserido na membrana chamado de F\(_0\) (Lewin e Norman, 1983; Finbow e Harrison, 1997), portanto elas são estruturalmente semelhantes como está ilustrado na figura 2. Portanto, diferentemente das V-ATPases, a F-ATPase é uma ATPsintase que utiliza o fluxo de prótons para geração de moléculas de ATP.
2.4- Estrutura e Funcionamento da P-ATPase (Na+-K+-ATPase)

A P-ATPase (Na+-K+-ATPase) é uma bomba de prótons presente na membrana plasmática, que é a principal responsável pela energização das membranas plasmáticas das células animais. A manutenção do potencial de membrana é feito com a extrusão de moléculas de Na\(^+\) e entrada de K\(^+\) na célula, como está ilustrado na figura 3. Sendo assim, portanto, uma importante marcadora de membrana plasmática e um parâmetro medidor da qualidade da fração de membrana obtida com a técnica de fracionamento celular e purificação de membrana.
2.5- Estrutura e Funcionamento da V-ATPase

Em geral nas células animais, a V-ATPase é uma enzima oligomérica, com cerca de 13 subunidades, que possui dois domínios sendo um catalítico V_1 e um de membrana V_0. O domínio V_1 é um complexo periférico com 570-kDa e 8 subunidades (A-H), sendo considerado o setor catalítico. O domínio V_0 é um complexo integral de membrana com 260-kDa e 5 subunidades (a, c, c’, c”,d), sendo responsável pela translocação dos prótons (Forgac, 1998; Bowman e cols, 2003). No setor catalítico está localizado o sítio de alta afinidade para ligação do ATP, onde ocorre a hidrólise deste substrato energético acoplada a mudanças conformacionais do setor V_0 responsáveis pelo transporte ativo de íons H^+, estabelecendo um gradiente eletroquímico na membrana em que a V-ATPase está inserida (Vitavska e cols, 2005; Drory e Nelson, 2006), como está ilustrada na figura 4.
Figura 4- Esquema da V-ATPase mostrando as múltiplas subunidades e os domínios V_0 e V_1. O domínio catalítico V_1 possui 8 subunidades (A, B, C, D, E, F, G e H) e o sítio para ligação de ATP, enquanto o domínio integral de membrana V_0 possui 5 subunidades (a, c, c',c'' e d) e o sítio de ligação para o inibidor (subunidade c) (Adaptada de Paroutis e cols, 2004).

Foi recentemente descrito que, tal qual ocorre com as F-ATPases, as V-ATPases também funcionam como motores giratórios que bombeiam prótons através da membrana por sua similaridade estrutural (Kawasaki-Nishi e cols, 2003; Paroutis e cols, 2004). A V-ATPase é evolucionamente descendente de uma família de bombas de prótons ATP-sintases de arqueobactérias que também originaram as F-ATPases de mitocôndrias e cloroplastos (Nelson, 1992; Forgac, 1999; Kane, 2006; Qi e Forgac, 2007).

Dentre os principais mecanismos de regulação da V-ATPase já descritos, é destacada principalmente a ligação reversível de uma ponte dissulfeto entre os resíduos conservados de cisteína presentes no sítio catalítico da enzima, a dissociação reversível dos domínios V_1 e V_0 e o mecanismo que envolve mudanças no acoplamento
entre o transporte de próton e a hidrólise de ATP (Brenton e Brown, 2007; Cipriano e cols, 2008).

As V-ATPases são encontradas nos compartimentos intracelulares de praticamente todos os tipos celulares de eucariotos (Nelson e cols, 2000; Paroutis e cols, 2004; Wilkens e cols, 2004). A atividade das V-ATPases intracelulares está envolvida em processos vitais como o tráfego de membrana, degradação de proteínas, energização de sistemas secundários de transporte de íons e outros metabólicos, na entrada de vírus e toxinas e manutenção de pH de células saudáveis e tumorais (Wang e cols, 2007; De Milito e cols, 2007).

Em humanos, a presença de V-ATPases na membrana plasmática tem sido bem documentada em osteoclastos, células renales e de epidídimo, e tumorais (células angiogênicas e metastáticas), onde estas enzimas são responsáveis, respectivamente, pela reabsorção óssea, acidificação urinária, maturação espermática e invasão tumoral (Cipriano e cols, 2008). Também existem evidências da presença de V-ATPases nas plasmalemas de macrófagos, neutrófilos, hepatócitos e células parietais gástricas. Todavia, a caracterização da expressão e da atividade dessas bombas de prótons só tem sido claramente estabelecida para as formas presentes nas membranas das diversas organelas intracelulares, incluindo: endossomos, lisossomos, vesículas de Golgi e vesículas sinápticas (Grinstein e cols, 1992; Martinéz-Zaguilán e cols, 1993; Brisseau e cols, 1996; Mattsson e Keeling, 1996; Martinéz-Zaguilán e cols, 1998; Murakami e cols, 2001; Vitavska e cols, 2003; Rojas e cols, 2006; Cipriano e cols, 2008).
2.6- Inibidores da V-ATPase

A mais convincente evidência do papel central da V-ATPase na acidificação de organelas é fornecida pelo uso do antibiótico do grupo dos macrólideos, a bafilomicina A1, o qual foi caracterizado como um inibidor altamente específico desta enzima transportadora (Mattsson e Keeling, 1996), e que é capaz de rapidamente dissipar o gradiente de pH através dos compartimentos das vias secretórias e endocíticas (Paroutis e cols, 2004).

De acordo com Huss e Wieczorek (2009), o entendimento do funcionamento dos inibidores da V-ATPase pode servir como base para desenvolvimento de drogas sintéticas capazes beneficiar os pacientes que sofrem de doenças como osteoporose e câncer com um tratamento mais específico e adequado. Estes autores ressaltam o grande potencial da bafilomicina A1 (Figura 5 A) e da concanamicina A (Figura 5 B) para este tipo de estudo, sendo estes também os primeiros inibidores específicos para a V-ATPase a serem descritos.

Figura 5- Estrutura química dos Inibidores da V-ATPase bafilomicina A1 (A) e concanamicina A (B) (Adaptada de Huss e Wieczorek, 2009).
Togashi e cols (1997), destacam mais dois tipos de inibidores da V-ATPase, além dos clássicos bafilomicina e concanamicina: a destruxina (Figura 6) e a prodigiosina (Figura 7). Estruturalmente a bafilomicina A1 e concanamicina A são membros do grupo de antibióticos macrolídeos, enquanto a destruxina pertence ao grupo dos depsipeptídeos.

Como foi observado por Luciani e cols, 2004, o tratamento com inibidores de bombas de prótons como Omeprazol e Esomeprazol diminui a capacidade das células tumorais de acidificar seu meio externo, sendo observada uma maior abundância de vesículas internas nas células tratadas do que nas não tratadas. Chun e cols (1995), Pearce e cols (1996) e Figura e cols (1997), descrevem o Lansoprazol como inibidor de bombas de prótons das células parietais gástricas que fisiologicamente expressam a V-ATPase na membrana plasmática semelhantemente como ocorre com as células tumorais.

Figura 6 – Estrutura do Inibidor de V-ATPase destruxina (Adaptada de Togashi e cols, 1997).

Figura 7- Estrutura do Inibidor de V-ATPase prodigiosina (Adaptada de Togashi e cols, 1997).

O tratamento com os inibidores de bombas de prótons como V-ATPase induz à sensibilização das células tumorais ao tratamento quimioterápico através das modificações causadas no pH celular, posto que um pH baixo citoplasmático é uma condição mais adequada para ativação de várias drogas quimioterápicas (De Milito e cols, 2007), como pode ser observado na figura 8. A inibição da atividade de bombas de prótons priva as células tumorais de um importante mecanismo que atua na regulação do pH celular, o que causa a morte dessas células (Luciani e cols, 2004; De Milito e cols, 2007; Pérez-Sañans e cols, 2009).
De acordo com Hinton e cols (2009), o uso do inibidor específico da V-ATPase, a bafilomicina, provocou redução da taxa de invasão na linhagem muito metastática de câncer de mama, enquanto não teve resultado significativo para a linhagem pouco metastática também de câncer de mama.

2.7- V-ATPase em Células Tumorais

Como descrito anteriormente, a V-ATPase exerce um importante papel no controle do pH intra e extracelular e é super expressa em muitos tipos de câncer, onde parece passar a exercer novas funções relacionadas com a invasão e metástase tumoral. Nos tecidos tumorais, a extrusão de prótons através da V-ATPase provoca acidificação...
extracelular, o que pode contribuir para a manutenção de um gradiente de pH entre o citosol alcalino e o meio extracelular ácido. O baixo pH do meio extracelular tumoral pode induzir ao aumento na secreção e ativação de proteases o que pode promover a degradação e remodelação da matriz extracelular através da ativação das proteases, o que irá contribuir para os processos de invasão e metástase. O micro-ambiente de tecidos tumorais e células angiogênicas é ácido, hostil para o crescimento de células saudáveis, porém as células câncerígenas sobreviverem e se proliferam nesse ambiente por expressarem a H⁺-ATPase na membrana plasmática a qual deve atuar de forma decisiva na manutenção do pH citosólico alcalino (Sennoune e Martínez-Zaguilán, 2007).

2.8- Progressão Tumoral

Um tumor é considerado maligno quando possui a capacidade de invadir tecidos vizinhos ou mesmo os distantes e ainda ser capaz de se implantar e proliferar nesses sítios. O termo invasão indica a penetração e ocupação nesses tecidos vizinhos, onde a invasão ocorre desde sua origem comprimindo o tecido normal, que vai permitir que penetre na circulação e assim alcance órgãos distantes e forme tumores secundários, sendo o processo chamado de metástase. A invasão e metástase não são exclusivas de câncer, esses processos também ocorrem em tecidos embrionários em desenvolvimento, em adultos saudáveis e em muitas doenças não cancrosas (Mareel e Leroy, 2003).

A metástase tumoral vem sido atribuída como grande causa de mortalidade por câncer o que torna a inibição desse processo uma possível estratégia para controle da progressão tumoral. E a cascata metastática envolve várias etapas como a fuga de
células do local do tumor primário para circulação ou sistema linfático e o extravasamento das células da circulação ou sistema linfático em locais secundários (Cuvier e cols, 1997; Gupta e Massagué, 2006). O processo de metástase tumoral depende da interação entre fatores intrínsecos de cada tipo de tumor e de fatores na célula hospedeira. Esse processo é bem seletivo e as lesões metastáticas representam o ponto final de diversos eventos destrutivos onde somente poucas células conseguem sobreviver (Fidler, 1978).

Em geral, células tumorais apresentam o metabolismo glicolítico hiperativo e assim produzem metabólitos ácidos, como o ácido lático (Tannock e Rotin, 1989; Gatenby e Gawlinski, 2003). O efluxo de prótons previne a apoptose por acidose celular e concomitantemente produz um ambiente extracelular ácido que também favorece a proliferação do câncer. A progressão maligna é acompanhada por nova expressão de genes e uma mudança de estado de metilação do DNA. A manutenção do pH extracelular ácido é crucial para o desenvolvimento dos tumores sólidos, e são ativados vários sistemas reguladores de pH, expressos pelas células tumorais, o que evita a apoptose (Boyd e cols, 2001; Izumi e cols, 2003; Zhan e cols, 2003; Lu e cols, 2005; Petrangolini e cols, 2006).

De acordo com Fais e cols (2007), evidências sugerem que hipóxia e acidificação são fenômenos inerentes tanto a progressão do câncer quanto a sensibilidade do tumor à quimioterapia. Ambientes hipóxicos e ácidos atuam seletivamente favorecendo a proliferação de células tumorais que assumem o lugar das células normais que não sobrevivem nestes ambientes, contribuindo assim para a progressão maligna do tumor (Nishi e Forgac, 2002). De acordo com Walenta e cols (2000), parâmetros como pressão
de oxigênio, perfusão sanguínea e perfil energético de concentração de metabólicos podem modular o crescimento tumoral e a sensibilidade à terapia.

Um importante fator determinante da acidificação tumoral é o metabolismo anaeróbico que permite a seleção de células com habilidade para sobreviver num ambiente hipóxico e anóxico através da ativação de um HIF e adaptação da via glicolítica para funcionar no modo fermentativo com geração de lactato como produto. Porém, os tumores podem gerar um ambiente ácido mesmo quando há redução da produção de ácido láctico pela via glicolítica, sugerindo então que o metabolismo glicolítico não é o principal mecanismo responsável pelo desenvolvimento de um ambiente ácido em tumores sólidos (Fais e cols, 2007).

A hipóxia nos tecidos resulta de um suprimento inadequado de O$_2$ que compromete as funções biológicas (Vaupel e cols, 2001). Estudos clínicos e experimentais mostram evidências do papel fundamental da hipóxia nos tumores sólidos que primariamente é uma consequência de distúrbios estruturais e funcionais na microcirculação e na deterioração das condições de difusão e está fortemente associada à propagação do tumor, progressão maligna e resistência ao tratamento (Hoeckel e Vaupel, 2001). De acordo com Graham e cols (1999), a hipóxia nos tumores sólidos pode ter um grande impacto sobre a progressão maligna, e evidências sugerem que a habilidade de invadir a matriz extracelular “in vitro” e sofrer metástase “in vivo” pode ser estimulada pela hipóxia de alguns tumores como melanomas, carcinomas em células escamosas e sarcomas (Gillies e cols, 1994; Hoeckel e cols, 1996). De acordo com Hoeckel e cols (1999), evidências experimentais mostram que a hipóxia induz à apoptose de células neoplásicas sensíveis, mas essa sensibilidade é perdida durante a progressão maligna.
Segundo Khatib e cols (2002), as pro proteínas convertases (Pcs) participam na ativação de um amplo espectro de proteínas, as quais são sintetizadas como precursores inativos que posteriormente são convertidos a sua forma totalmente ativa e funcional. A grande maioria dessas proteínas ativas, como por exemplo, as metaloproteases da matriz, fatores de crescimento e de adesão molecular, são cruciais nos processos de transformação celular e aquisição de fenótipo metastático. A inibição das Pcs afeta, de forma significativa, o fenótipo maligno de vários tipos de tumores. Também de acordo com Khatib e cols (2002), várias abordagens como expressão gênica e inibição enzimática sustentam a hipótese que as Pcs desempenham um papel na gênese e progressão de diversas desordens proliferativas, incluindo câncer.

A progressão maligna em melanócitos ocorre através de uma série de etapas rumo à formação do melanoma. O mecanismo que controla a progressão para a malignidade e a regressão é desconhecido. O modelo de progressão proposto por Clark enfatiza as mudanças histopatológicas que ocorrem durante o processo de progressão do melanoma (Miller e Mihm, 2006).
3- OBJETIVO GERAL

Este trabalho de dissertação teve como objetivo geral estudar a atividade enzimática das ATPases do tipo V, F e P e o perfil de acidificação de células tumorais, visando fornecer novos elementos para a elucidação do papel fisiopatológico destas enzimas transportadoras de prótons no processo de carcinogênese.

3.1- Objetivos Específicos

- Identificar a acidificação relacionada à presença de V-ATPases em linhagens de melanoma com diferentes potenciais metastáticos (B16 F10 e B16F0);
- Mensurar a acidificação de culturas de células cancerígenas relacionando o tempo e intensidade em que o processo ocorre em diferentes linhagens e sob a ação de inibidores da V-ATPase;
- Otimizar o processo de fracionamento celular para o isolamento de vesículas de membranas plasmáticas de células cancerígenas para possibilitar o estudo da cinética enzimática das bombas de H⁺ associadas a estas membranas;
- Verificar as diferenças entre os níveis de atividade hidrolítica da V-ATPase, Na⁺/K⁺-ATPase e F-ATPase nas células controle e de melanoma.
- Comparar os perfis de acidificação e atividade enzimática por hidrólise nas linhagens pouco e muito metastáticas de melanoma e na linhagem não tumoral.
4- MATERIAL & MÉTODOS

4.1- Cultura e Linhagens de Células

Como amostra de pesquisa, do presente trabalho, foram utilizadas as linhagens tumorais de melanoma de camundongo com diferentes potenciais metastáticos: muito metastática B16F10 e linhagem de melanoma pouco metastática B16F0 (Sloane e cols, 1982), adquiridas no banco de células Radovan, na Universidade Estadual do Rio de Janeiro (BCRJ). Sloane e cols (1982), realizaram experimentos “in vivo” e “in vitro” e em ambas situações a linhagem B16F10 apresentou uma maior ativação de catepsina B, marcador lisossomal, sendo que no ensaio “in vivo” foi 2 a 3 vezes maior e no ensaio “in vitro” foi 7 vezes maior.

Como controle experimental foram utilizadas culturas de células de linhagem de macrófago transformado de camundongo (J774 A1), as quais expressam V-ATPases na membranas plasmática (Forgac, 1992), mas não são carcinogênicas.

As células tumorais foram cultivadas em meio de cultura DMEM (Dulbecco’s Modified Eagle’s Médium, Sigma), suplementado com soro fetal bovino inativado (SFB, GIBCO) a 10%, em garrafas de cultura tpp e a troca do meio foi feita a cada 2 dias. Enquanto a linhagem de macrófago foi mantida com DMEM com 5% de soro fetal bovino (SFB). As linhagens foram mantidas em estufa de cultura com temperatura a 37°C e 5% de atmosfera de CO₂. Para manutenção as células foram manipuladas em fluxo laminar e observadas em microscópio invertido Zeiss Axiovert 135M, com aumentos de 20 e 40 vezes e filtro verde. As linhagens utilizadas foram do tipo aderente, ou seja, ficaram espralhadas na superfície das garrafas de cultura.
4.2- Microscopia de Campo Claro

A técnica de Campo Claro foi utilizada para análise morfológica das linhagens celulares utilizadas. Para tal, as células foram plaqueadas em lamínulas redondas de vidro, que foram colocadas no fundo de uma placa de 24 poços, com o meio de cultura suplementado com soro (DMEM+SFB). Após 24 horas do plaqueamento, o meio de cultura foi retirado e as células foram lavadas com PBS pH 7,0 aquecido (tampão fosfato-salino) e então a lamínula foi retirada da placa e a lâmina foi montada em meio de cultura sem soro para observação em microscópio Zeiss Axioplan e aumento de 20 vezes.

4.3- Microscopia de Fluorescência Usando o Fluoróforo Laranja de Acridina

Para marcação de vesículas ácidas foi usado o fluoróforo laranja de acridina onde 0,0010 g foram pesados para 1 ml de DMEM sem soro, que deve ser diluído duas vezes 1:10 em DMEM. Os procedimentos foram realizados no escuro. As células para o experimento foram plaqueadas 24 hs antes do experimento em lamínulas na placa de 24 poços. Foram lavadas duas vezes com PBS pH 7,0 (tampão fosfato-salino) aquecido, depois foram incubadas por 20 minutos em estufa a 37°C e 5% CO₂ com a solução de laranja de acridina em meio de cultura. Após a incubação, as células foram lavadas duas vezes com meio de cultura sem soro e todas as etapas ocorreram no escuro. As lamínulas são montadas em lâminas de vidro com meio de cultura sem soro, observadas no microscópio de fluorescência Zeiss Axioplan e fotografadas com câmera digital (Adaptado de Robbins e Marcus, 1963). Para os tratamentos com os inibidores KNO₃ 50mM e concanamicina A 5nM, foram adotados os mesmos procedimentos descritos acima para o plaqueamento e para as lavagens, porém a incubação com o
inibidor ocorreu, antes da incubação com a solução de laranja de acridina e meio de cultura, por 1 hora.

4.4 - Mensuração de pH

4.4.1- Inferência do pH com Uso de Corante

Para inferência do pH, as células tumorais (B16F10 e B16F0) e controle (J774 A₁) foram plaqueadas em placas de Petri com meio de cultura DMEM suplementado (DMEM + SFB). Após 24 horas do plaqueamento, com as células totalmente aderidas na placa, estas foram observadas no microscópio Invertido, foi colocado o filme de ágar 0,7%, o corante e indicador de pH púpura de bromocresol 0,0015% e CaSO₄ a 5mM, com pH 6,2 por cima do meio de cultura que possui o corante e indicador de pH vermelho de fenol e estava em cima das células. As fotos digitais foram obtidas com aumento de 20X no microscópio invertido Axiovert após 1 hora de exposição ao filme de ágar e então foi acrescentado a cada placa com célula, meio e filme de ágar 50mM de KNO₃. Após 24 horas de exposição ao inibidor foram obtidas fotos digitais em aumento de 20X.

4.4.2- Mensuração de pH Quantitativa

O meio de cultura é coletado nos seguintes tempos: 0h (meio puro), 24, 48 e 96 hs após o contato com as células, e é mensurado o pH dos meios de cultura de cada uma das linhagens, no pHmetro.

4.5- Fracionamento Celular e Purificação da Membrana Plasmática

Para obtenção das frações mitocondrais e de membrana plasmática, as células tumorais (B16F10 e B16F0) e controle (J774 A₁), foram colocadas em tubos do tipo
“falcon” que foram centrifugados primeiramente por 3 vezes em centrífuga preparatória refrigerada a 50Xg por 5 minutos e 4°C alternando com lavagem com tampão de lavagem com 10 mM de Tris-HCl, 1 mM de EDTA, 150 mM de NaCl, 1 mM PMSF e 3 mM benzamidina. O sobrenadante foi centrifugado na microultra centrífuga a 10.000Xg por 4 min a 2°C para baixar fração mitocondrial, depois o sobrenadante foi centrifugado na microultra a 100.000Xg por 30 min a 2°C para baixar a fração microsomal que foi ressuspensa em tampão homogeneizador contendo 250 mM de sacarose, 1 mM EGTA e 50 mM de Tris-HCl e colocado no topo de gradiente de sacarose (46% e 25%). O gradiente foi centrifugado a 100.000 X g por 8 min a 2°C e foi coletada a fração da interface enriquecida com V-ATPase e P-ATPase. A fração microsomal foi novamente obtida após centrifugar o conteúdo restante do gradiente a 100.000Xg por 30 minutos. As amostras obtidas foram congeladas N₂ líquido e armazenadas no freezer –70°C.

4.5.1 – Dosagem de Proteína

A fração de vesículas purificadas teve o seu conteúdo de proteínas totais dosado pelo método de Bradford (1976). A solução de Bradford foi confeccionada com 100 mg de comassie blue, 50 mL de etanol sobre agitação durante 1 hora, depois foi adicionado 100 mL de ácido ortofosfórico e o volume foi completado para 1000 mL de H₂O destilada, a solução foi filtrada em papel filtro 4 vezes. A curva padrão foi obtida utilizando solução de BSA 1mg/mL diluída a concentrações variando de 2 a 18 µg, completando o volume para 100 mL de H₂O ultra pura e adicionando 1 mL da solução de Bradford. Nas amostras são colocados 90 µL de H₂O ultra pura, padrão de BSA, amostra e 1 mL de Bradford, espera 15 minutos e foi feita a leitura a 595 nm no espectrofotômetro.
4.5.2 – Atividade de hidrólise de ATP das ATPases do tipo: V, P e F

Para mensuração de atividade enzimática de cada uma das linhagens (B16F10, B16F0 e J774) foram utilizadas as frações mitocondriais para atividade de F-ATPase e de membrana plasmática obtida da interface para atividade de V-ATPase e P-ATPase (Na e K-ATPase). Para tal, o meio de reação básico continha: Hepes-Tris 10 mM (pH 7,0 para plasmalema ou 8,0 para mitocôndrias), MgSO$_4$ 1 mM, Molibdato de sódio 0,2 mM e ATP 1 mM; levado ao volume final com adição da apropriada quantidade de H$_2$O ultra pura para cada condição de ensaio. Para revelação da atividade referente a cada tipo de ATPase estudada foram usados inibidores específicos para a F-ATPase (Azida 0,5 mM), P-ATPases (Vanadato 0,1 mM ou Ouabaína 1 mM), ou V-ATPases (Concanamicina A 5 nM) (Adaptado por Summer e cols, 1995). A reação foi disparada com a adição de cada fração de membranas (plasmalema ou mitocôndria; na concentração de 0,030 mg/mL de proteína) e parada após 0, 9, 12, 15 e 30 minutos de incubação, pela retirada de alíquotas que são imediatamente transferidas para tubos de ensaio contendo TCA a 5%, mantidos em gelo. Para revelar o fosfato liberado pela hidrólise de ATP, foi empregado o método de Fiske e Subbarow (1925), e a leitura foi feita no leitor de placas a 750 nm.

A atividade da P-ATPase (Na e K-ATPase) ouabaína sensível foi realizada como controle para verificar que realmente as técnicas empregadas para fracionamento e purificação foram fidedignas e para comprovar que a fração de interface utilizada era mesmo membrana plasmática.

A partir da obtenção da atividade temporal de F, V e P – ATPase, foram calculadas a velocidade enzimática média com objetivo de fazer uma comparação entre as
linhagens e assim poder correlacionar maior atividade com o potencial metastático e também foram feitas as curvas de cada gráfico com a equação da reta e regressão.

4.5.3- Tratamento Estatístico

Para análise estatística foram feitos cálculos de erro padrão nos gráficos de atividade em barras e foi aplicado o teste de t student e nos gráficos de atividade linear foi calculado erro padrão (SE) e foi feita regressão exibindo linha de tendência, equação da reta e \(R^2 \) de cada uma das linhagens e para cada enzima (F e V-ATPase).
5- RESULTADOS

5.1 – Morfologia Celular

Na figura 9, observa-se, através da técnica de campo claro, a morfologia das células utilizadas onde em A está a linhagem de macrófago transformada J774, em B a linhagem de melanoma muito metastática B16F10 e em C a linhagem de melanoma pouco metastática B16F0. De acordo com o resultado obtido, é possível observar uma nítida diferença em relação ao tamanho das linhagens em que a linhagem controle J774 apresentou menor tamanho seguido da linhagem B16F10 e a linhagem B16F0, consideravelmente, apresentou maior tamanho. Outra característica observada é que as células da linhagem B16F10 necessitam de contato umas com as outras para crescerem de forma mais rápida e efetiva.
Figura 9 – Fotomicrografia mostrando a morfologia das linhagens utilizadas através da técnica de Campo Claro. Em A J774, em B B16F10 e em C B16F0, placaamento 24hs, após incubação com Laranja de Acridina.
5.2 – Visualização de Compartimentos Ácidos

Na figura 10, em A observa-se perfil de acidificação através da marcação de compartimentos ácidos pelo fluoróforo Laranja de Acridina mais internalizada na linhagem J774, em B observa-se a marcação de compartimentos ácidos de forma mais periférica na linhagem de melanoma muito metastática B16F10, em C observa-se um padrão de marcação intermediário, apresentando alguns compartimentos ácidos periféricamente dispostos e outros localizados na porção mais interna das células na linhagem de melanoma pouco metastática B16F0.
Figura 10 – Fotomicrografia das linhagens evidenciando o perfil de acidificação, através do fluoróforo laranja de acridina, encontrado em A (J774), B (B16F10) e C (B16F0).
Na figura 11, A, B e C apresentam o padrão de acidificação das vesículas nas células das três linhagens, observado ao Microscópio de Fluorescência após 1 hora de incubação com 50mM KNO₃, inibidor das V-ATPases. Em D observa-se as células J774 ainda mantêm a fluorescência de grande parte de seus compartimentos ácidos internalizados. Em E e F as células B16F10 e B16F0 apresentam uma clara diminuição dos compartimentos ácidos periféricos e maior internalização destes.
Figura 11- Fotomicrografia das linhagens evidenciando o perfil de acidificação, através do fluoróforo laranja de acridina e tratamento com KNO$_3$ 50mM após 1h, em D (J774), E (B16F10) e F (B16F0).
Na figura 12, em A, B e C, observamos o padrão de acidificação das vesículas, nas células das três linhagens, revelado após 1 hora de incubação com 5nM de concanamicina A, um inibidor ainda mais potente e específico para V-ATPases, onde em G (J774), H (B16F10) e I (B16F0) pode-se observar ausência de compartimentos ácidos.
Figura 12 – Fotomicrografia das linhagens evidenciando o perfil de acidificação, através do fluoróforo laranja de acridina e tratamento com Concanamicina A 5nM após 1h, em G (J774), H (B16F10) e I (B16F0).
5.3 – Acidificação Extracelular

5.3.1- Inferência do pH Usando Ágar e Púrpura de Bromocresol Comparando J774, B16F0 e B16F10

Na figura 13 observa-se, em A J774, em D B16F0, em G B16F10 apenas com meio de cultura, em B J774 com ágar com padrão rosado indicando pH alcalino, em E B16F0 com ágar com padrão pardo indicando padrão intermediário entre alcalino e ácido, em H B16F10 com ágar indicando pH ácido, em C J774 com ágar e nitrato usado como inibidor onde continua sendo observado padrão rosado com 24 horas após o inibidor, em F B16F0 com ágar e nitrato usado como inibidor onde observa-se diminuição de marcação em volta da célula com 24 horas após inibidor, em I B16F10 com ágar e nitrato usado como inibidor onde observa-se diminuição da marcação em volta da célula com 24 horas após o inibidor.
Figura 13 – Fotomicrografia mostrando o perfil de acidificação do meio de cultura das linhagens J774, B16F10 e B16F0. Onde em A (J774), D (B16F0) e G (B16F10) as células se encontram apenas com meio de cultura; em B (J774), E (B16F0) e H (B16F10) as células se encontram com meio de cultura e filme de ágar com púrpura de bromocresol após 1 h de exposição e em C (J774), F (B16F0) e I (B16F10) as células se encontram com meio de cultura, filme de ágar com púrpura de bromocresol e KNO₃ 50 mM, após 24 horas de exposição.
5.4 – Medição potenciométrica do pH do meio de cultura

Na tabela 1, observa-se acidificação através de medição do pH do meio de cultura 0, 24, 48 e 96 horas, onde podemos observar que a acidificação ocorre de forma mais rápida na linhagem tumoral de B16F10 em relação à linhagem controle J774. J774 SE ± 0,2 e B16F10 SE± 0,28.

<table>
<thead>
<tr>
<th>Linhagem Celular</th>
<th>Tipo de Meio de Cultura</th>
<th>pH 0 h</th>
<th>pH 24hs</th>
<th>pH 48hs</th>
<th>pH 96hs</th>
</tr>
</thead>
<tbody>
<tr>
<td>J774</td>
<td>DMEM 5% SFB</td>
<td>7,64</td>
<td>7,37</td>
<td>7,02</td>
<td>6,72</td>
</tr>
<tr>
<td>B16F10</td>
<td>DMEM 10% SFB</td>
<td>7,54</td>
<td>7,07</td>
<td>6,54</td>
<td>6,25</td>
</tr>
</tbody>
</table>

5.5- Atividade Hidrolítica da F-ATPase da Fração Mitochondrial

Na figura 14, o gráfico expressa em µmol Pi mg⁻¹ ptn a atividade de hidrólise de ATP da fração mitocondrial da linhagem de macrófago J774 (losango), melanoma muito metastático B16F10 (quadrado) e melanoma pouco metastático B16F0 (triângulo). Os valores obtidos para a linhagem de melanoma de camundongo muito metastática B16F10 (quadrado) foram superiores em relação ao controle e à linhagem pouco metastática que apresentou padrão intermediário. A atividade da linhagem mais metastática B16F10 comparada à J774 chega a ser duas vezes maior.
Figura 14 – Atividade Hidrolítica da F-ATPase sensível à Azida comparando as linhagens de melanoma. O meio de reação continha: Hepes-Tris pH 8,0 10mM, MgSO$_4$ 1mM, Molibdato de sódio 0,2 mM e ATP 1 mM; Azida 0,5 mM. SE ±, n=6.
Abaixo seguem os gráficos da F-ATPase com equação da reta e regressão.

A

\[y = 0,1919x \]

\[R^2 = 0,8642 \]

B

\[y = 0,3369x \]

\[R^2 = 0,9791 \]

C

\[y = 0,2407x \]

\[R^2 = 0,9265 \]

Figura 15- Atividade Hidrolítica da F-ATPase de cada uma das linhagens J774, B16F10 e B16F0. Os gráficos apresentam as equações da reta e as regressões que melhor descrevem os dados cinéticos obtidos.
Na Figura 16, as médias das velocidades iniciais das atividades sensíveis à azida, referentes às F-ATPases das frações mitocondriais de J774, linhagem de melanoma pouco metastática B16F0 e linhagem de melanoma muito metastática B16F10, onde a linhagem B16F10 com 0,34 µmol Pi mg\(^{-1}\) ptn/min apresentou a maior velocidade, seguida das atividades das linhagens J774 0,22 µmol Pi mg\(^{-1}\) ptn/ min e B16F0 0,25 µmol Pi mg\(^{-1}\) ptn/ min.

![Diagrama de barra mostrando a atividade de F-ATPase nas diferentes linhagens celulares.](image)

Figura 16 – Velocidade Inicial da enzima F-ATPase. O meio de reação continha: Hepes-Tris pH 8,0 10mM, MgSO\(_4\) 1mM, Molibdato de sódio 0,2 mM e ATP 1 mM; Azida 0,5 mM fração mitocondrial obtida por fracionamento celular. SE ±. a J774 e B16F10 p ≤ 0,01 t=7,4. b B16F0 e B16F10 p ≤ 0,01 t=8,15.

5.6- Atividade Hidrolítica V-ATPase da Fração de Interface

Na figura 17, o gráfico expressa em µmol Pi mg\(^{-1}\) ptn a atividade de hidrólise de ATP da V-ATPase na fração da interface de membrana plasmática da linhagem de macrófago J774 (círculo), melanoma muito metastático B16F10 (quadrado) e melanoma
pouco metastático B16F0 (triângulo). Os valores obtidos para a linhagem de melanoma de camundongo muito metastática B16F10 (quadrado) foram superiores em relação ao controle e à linhagem pouco metastática que apresentou padrão intermediário. Na linhagem B16F10 comparada à J774 e B16F0 a atividade chega a ser mais que duas vezes maior. Essa atividade é disparada no tempo 0 e é seguido dos tempos 9, 12, 15 e 30 minutos.

Figura 17 – Atividade Hidrolítica da V-ATPase comparativa entre as linhagens J774, B16F10 e B16F0. O meio de reação continha: Hepes-Tris pH 7,0 10mM, MgSO₄ 1mM, Molibdato de Na 0,2 mM e ATP 1 mM; Azida 0,5 mM; Vanadato 0,1mM; Concanamicina A 5 nM. SE ±, n=6.
Abaixo seguem os gráficos da V-ATPase com equação da reta e regressão.

Figura 18 - Atividades Hidrolíticas da V-ATPase de membranas plasmáticas das diferentes linhagens (J774, B16F10 e B16F0). Os gráficos apresentam as equações da reta e as regressões que melhor descrevem os dados cinéticos obtidos.
No gráfico 19, observa-se a velocidade inicial média da V-ATPase nas frações de membrana plasmática obtidas na interface do gradiente de sacarose da linhagem controle J774, linhagem de melanoma pouco metastática B16F0 e linhagem de melanoma muito metastática B16F10 por minuto, onde a linhagem B16F10 apresenta maior velocidade 0,16 µmol Pi mg\(^{-1}\) ptn/min e menor atividade na linhagem J774 0,1 µmol Pi mg\(^{-1}\) ptn/ min e B16F0 0,07 µmol Pi mg\(^{-1}\) ptn/ min.

![Figura 19 - Velocidade Inicial média da enzima V-ATPase por minuto na fração de interface nas linhagens J774, B16F10 e B16F0. O meio de reação continha: Hepes-Tris pH 7,0 10mM, MgSO\(_4\) 1mM, molibdato de sódio 0,2 mM e ATP 1 mM; azida 0,5 mM, concanamicina A 5 nM e fração de membrana obtida na interface do gradiente de sacarose. a B16F0 e B16F10 p≤ 0,05 t=0,02.](image-url)
5.7 – Atividade Na-K-ATPase Ouabaina Sensível

Os Gráficos abaixo expressam a atividade da bomba Na-K ATPase nas frações mitocondrial (figura 20) e interface (figura 21), como forma de mostrar a qualidade da fração principalmente da interface.

Figura 20- Atividade de Na-K-ATPase na fração mitocondrial das linhagens J774, B16F10 e B16F0. O meio de reação continha: Hepes-Tris pH 8,0 10mM, MgSO$_4$ 1mM, Molibdato de sódio 0,2 mM e ATP 1 mM; ouabaina 1 mM e fração mitocondrial.

Figura 21- Atividade Na-K-ATPase na fração de interface das linhagens J774, B16F10 e B16F0. O meio de reação continha: Hepes-Tris pH 7,0 10mM, MgSO$_4$ 1mM, Molibdato de sódio 0,2 mM e ATP 1 mM, ouabaina 1 mM e fração de membrana obtida na interface do gradiente de sacarose.
6- DISCUSSÃO

De acordo com os dados de perspectivas do INCA para 2010 (Cordeiro e cols, 2009) a incidência de novos casos de câncer será superior a 400.000. Inserido nessa estatística, com uma incidência estimada em torno de 5.000 indistintamente entre homens e mulheres, está o melanoma. Apesar de uma ocorrência relativamente baixa em comparação com outros tipos de cânceres como os de mama e próstata, o melanoma apresenta grande letalidade (Cordeiro e cols, 2009). Segundo Miller e Mihn (2006), o melanoma é responsável por 80% das mortes por câncer de pele e somente cerca de 14% dos pacientes com melanoma metastático sobrevivem por aproximadamente 5 anos. Além disso, o tratamento contra o avanço do melanoma se mostra bem difícil e é importante que sejam entendidos os processos de mudanças que promovem o crescimento vertical e invasão do melanoma e também os mecanismos que bloqueiam a quimioterapia efetiva.

Trabalhos seminais realizados pelo grupo de pesquisa de Sennoune e Martinez-Zaguilán e cols (1993, 1996, 1998, 2004, 2007), demonstraram que a V-ATPase é um fator importante na aquisição de um fenótipo mais invasivo e metastático, e que esta enzima que normalmente é encontrada em organelas ácidas, está presente na superfície das células tumorais, exacerbando a habilidade migratória de células metastáticas, tornando-se assim um importante alvo na terapia contra o câncer e com isso um importante objeto de estudo (Fais e cols, 2007). Cipriano e cols (2008), destacam que a presença desta enzima tem sido bem documentada em células como osteoclastos, renais e tumorais, onde a localização influencia diretamente na função respectivamente de reabsorção óssea, acidificação urinária e invasão tumoral.
A presente dissertação apresenta evidências bioquímicas da presença de V-ATPases funcionalmente expressas na região mais periférica de células metastáticas de melanoma. Seguindo o sinal de fluorescência do fluoróforo Laranja de Acridina, verificamos o perfil de marcação de compartimentos ácidos numa linhagem considerada controle, J774 de macrófagos transformados, que fisiologicamente expressam V-ATPases na membrana plasmática, sem associação a patologias (Forgac, 1992), e em linhagens de melanoma de camundongo com diferentes potenciais metastáticos: B16F10 (muito metastática) e B16F0 (pouco metastática). O sinal do fluoróforo marcando os compartimentos ácidos mostrou que somente a linhagem muito metastática apresentou uma marcação de compartimentos fortemente concentrada na parte mais periférica das células, adjacente à membrana plasmática. Depois foi observada uma antagonização deste padrão de migração periférica das vesículas com uso do inibidor da V-ATPase KNO₃ e o completo desaparecimento deste sinal na presença de Concanamicina A, um inibidor ainda mais potente desta enzima. Estes dados sugerem que a migração para a periferia das células metastáticas de vesículas ácidas e a própria acidificação do lúmen das mesmas são eventos diretamente relacionados à atividade das V-ATPases presentes nestas membranas. Estes resultados corroboram dados obtidos em trabalhos anteriores com outras linhagens tumorais, principalmente de câncer de mama (Sennoune e cols, 2004) e confirmam maior acidificação periférica nas linhagens com maior potencial metastático, que também corrobora com dados obtidos por outros grupos de pesquisa. A Manutenção do pH extracelular ácido é de suma importância para o desenvolvimento dos tumores sólidos, e são ativados vários sistemas reguladores de pH, expressos pelas células tumorais, o
que evita e previne a apoptose (Boyd e cols, 2001; Izumi e cols, 2003; Zhan e cols, 2003; Lu e cols, 2005; Petrangolini e cols, 2006). De Milito e cols (2007), mostraram que o tratamento com os inibidores de bombas de prótons como V-ATPase induz à sensibilização das células tumorais ao tratamento quimioterápico através das modificações causadas no pH celular. A inibição da atividade de bombas de prótons priva as células tumorais de um importante mecanismo que atua na regulação do pH celular, o que causa a morte dessas células (Luciani e cols, 2004; De Milito e cols, 2007; Pérez-Saíans e cols, 2009). De acordo com Huss e Wieczorek (2009), o entendimento do funcionamento dos inibidores da V-ATPase pode servir como base para desenvolvimento de drogas sintéticas capazes beneficiar os pacientes que sofrem de doenças como osteoporose e câncer com um tratamento mais específico e adequado, estes autores e Perez-Sayans (2009), destacam o uso dos inibidores da mesma família dos antibióticos macroclídeos Concanamicina A e Bafilomicina A₁ como eficientes na inibição da V-ATPase em concentrações nanomolares.

As V-ATPases têm como função principal a geração de fluxo de prótons (Hille e cols, 1993; Torigoe e cols, 2002; Nakamura, 2003; Nishi, Kawasaki-Nishi e Forgac, 2003; Wilkens, Inoue e Forgac, 2004; Saroussi e Nelson, 2009) e na esfera das células tumorais, a acidificação promovida por estas enzimas transportadoras tem se relacionado como o potencial de invasão e metástase tumoral (Sennoune e Martinez-Zaguilán, 2007; Fais e cols, 2007). Segundo Gottlieb e cols (1995) e Martinez-Zaguilán e cols (1998), a manutenção do pH influencia alguns processos celulares como crescimento, mobilidade, tumorogênese, metástase, apoptose e resistência a drogas. No intuito de verificar se este fenômeno também ocorre em células de melanoma, estudamos a acidificação extracelular promovida por linhagens controle, pouco e muito
metastáticas. Foram feitas fotomicrografias das células em cultivo na presença de indicadores de pH e também mudanças quantitativas foram registradas por mensurações em pHmetro. A linhagem muito metastática B16F10 apresentou maior acidificação e esta também foi iniciada num intervalo de tempo menor que as mudanças de pH registradas nas outras linhagens. O KNO₃ no experimento de acidificação mostrou reversão no padrão de acidificação bem evidente principalmente na linhagem mais metastática, onde foi bem drástica a mudança de cor do pardo para o róseo. Alguns estudos como o de Tannock e Rotin (1989) e Sennoune (2004), realizaram mensurações de pH através de sondas, e a partir dos resultados elucidaram os tipos de reguladores de pH predominantes em determinadas linhagens. Porém, não foi realizada inferência qualitativa de pH extracelular como foi mostrada no presente trabalho.

Alguns estudos prévios mostraram que linhagens de melanoma humano com diferentes potenciais de metástase possuem diferentes e dinâmicos mecanismos de regulação de pH para sobreviver num ambiente hipóxico e com pH extracelular ácido. Entre esses sistemas estão as bombas de prótons, trocadores Na⁺/H⁺ e simportadores proton-lactato (Martinez-Zaguilán e cols 1998; Wahl e cols 2000; Sennoune e cols 2004). O aumento da expressão da V-ATPases nas membranas plasmáticas de células cancerígenas com o avanço do processo de metástase foi verificado por imunomarcação em microscopia confocal usando anticorpos específicos associados a sondas fluorescentes (Sennoune e cols 2004) e também por monitoramento de fluxo de prótons em linhagens de câncer de mama com diferentes potenciais metastáticos (Luo, 2001). Todavia, existem poucas evidências sobre a atividade desta enzima nas membranas plasmáticas destas células. No artigo de Sennoune e cols (2004), estes
Autores também empregaram um procedimento de fracionamento celular para tentar estudar a atividade destas enzimas nas membranas de células de tumor de mama.

Então, no presente estudo, adaptamos o protocolo de fracionamento celular, para estudar a atividade enzimática na fração isolada de membrana plasmática da linhagem muito metastática B16F10, comparativamente com as atividades das linhagens pouco metastática B16F0 e controle J774. Os resultados corroboraram com os dados da literatura que apontam um papel chave da V-ATPase de células tumorais de mama (Sennoune e cols, 2004; Lu e cols, 2005), ao mostrar que a maioratividade desta enzima é observada na linhagem muito metastática de melanoma em relação à linhagem do mesmo tipo com baixo potencial de metástase.

Também foram obtidas frações mitocondriais para estudo enzimático das F-ATPases. Estruturalmente, as ATPases do tipo V e F são bem conservadas ao longo da evolução (Gogarten e cols, 1992; Harvey e Wieczorek, 1997; Wilkens e Forgac, 2001; Gruber e cols, 2001). Portanto, assim como ocorreu em relação à V-ATPase foi encontrada maior atividade da F-ATPase azida sensível na linhagem de melanoma mais metastático em relação às outras linhagens utilizadas de melanoma pouco metastático e a linhagem controle de macrófago transformado; e esse dado corrobora com dados de outros grupos de que as células tumorais apresentam metabolismo bem acelerado. Segundo Tannock e Rotin (1989) e Gatenby e Gawlinski (2003), as células tumorais apresentam metabolismo glicolítico hiperativo, produzindo metabólitos ácidos. Fais e cols (2007), destacam que os tumores podem gerar um ambiente ácido mesmo quando há redução da produção de ácido láctico pela via glicolítica, sugerindo então que o metabolismo glicolítico não é o principal mecanismo responsável pelo desenvolvimento de um ambiente ácido em tumores sólidos.
Como forma de preencher uma lacuna existente em relação à dados bioquímicos, principalmente, em relação às enzimas V e F-ATPase em tumores, foram calculadas as velocidades enzimáticas com base nos dados de atividade obtidos correlacionando com o tempo e foi observado o mesmo perfil com a linhagem mais metastática com maior velocidade enzimática tanto de F quanto de V-ATPase.

Outros estudos mostraram maior atividade de catépsina B, uma enzima proteolítica usada como marcador lisossomal, na linhagem B16F10 comparado com a B16F1, uma outra linhagem de melanoma com baixo potencial de metástase (Sloane, 1982). Lisossomos desempenham um importante papel na cascata metastática devido às enzimas hidrolíticas que degradam a matriz extracelular (Cipriano e cols, 2008). Então, parece plausível uma integração dos resultados que indicam uma maior migração de compartimentos ácidos para a periferia das células muito metastáticas com a maior acidificação do ambiente extracelular destas culturas e com a maior atividade da V-ATPase nas frações de membrana plasmática. Em relação aos dados obtidos de atividade de P-ATPase (Na e K-ATPase) foi encontrada menor atividade nas linhagens tumorais em relação à linhagem controle que teve maior atividade. Neste contexto a V-ATPase se consolida como alvo principal para novas estratégias nas pesquisas e terapias contra o câncer, inclusive em melanomas.
7- CONCLUSÃO

Após a análise de todos resultados obtidos neste trabalho, pode-se concluir que as linhagens pouco B16F0 e muito B16F10 metastáticas de melanoma apresentaram comportamento distinto em relação ao perfil de acidificação extracelular e na atividade enzimática da V-ATPase, onde a linhagem muito metastática apresentou maior acidificação, vesículas dispostas de forma periférica e maior atividade desta bomba de H⁺ na periferia, o que pode ser relacionado ao fenótipo mais metastático destas células.

Conclui-se então que a V-ATPase se mostra ativamente expressa na membrana plasmática de células de melanoma favorecendo, assim, a criação de um ambiente extracelular ácido que está relacionado ao rápido crescimento e invasão tumoral. Com isso, esta enzima pode ser considerada um importante alvo para pesquisas e terapias na área do câncer.
REFERÊNCIAS BIBLIOGRÁFICAS

Luo, D. Proton ATPase are involved in metastasis in human breast cancer cell. A thesis in Physiology submitted to the Graduate Faculty of Texas Tech University Health Sciences Center. 1-61, 2001.

Moriyama, Y. Membrane Energization by proton pumps is important for compartmentalization of drugs and toxins: a new type of active transport. The Journal of Experimental Biology 199, 1447-1454, 1996.

